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概要
SIR モデルは、感染症の流行過程を説明する数理モデルとして広く知られている。本研究で
は、ワクチン接種人口を考慮した SVIRモデルを対象とする。モデルに時間遅れの項を導入する
ことで、ウイルスに感染してから発症するまでの潜伏期間を反映した数理モデルを構築できる。
本講演では、このモデルにおける平衡点の存在とその安定性について得られた結果を紹介する。

1 導入
本講演は,久保隆徹先生（お茶の水女子大学）との共同研究に基づく.

時間遅れの方程式を用いたロタウイルスに対する免疫を考慮して作成した数理モデルについて数学的
な解析を行う. 考察したい対象の人口集団を 4つの状態に分割し,次のように定める.

• S = S(t)：時刻 tにおける感受性人口
• V = V (t)：時刻 tにおけるワクチン接種によりロタウイルス感染症に対する免疫をもった人口
• I = I(t)：時刻 tにおける感染性人口
• R = R(t)：時刻 tにおける回復人口

参考文献 [2]によれば,ロタウイルス感染症の時間遅れのない数理モデルは,以下のような微分方程
式モデルで記述できる. 

dS

dt
= (1− ρ)b− β(I)SI − (ν + µ)S

dV

dt
= ρb+ νS − εβ(I)V I − µV

dI

dt
= β(I)SI + εβ(I)V I − (µκ + κ+ µ)I

dR

dt
= κI − µR

(1.1)

ただし, b:出生率, ρ:各個体が出生時に免疫をもって生まれてくる確率, ν:ワクチン接種率, β(I):接
触率, µ:死亡率, κ:回復率, µκ:ロタウイルスによる死亡率，ε：ワクチン接種により感染が軽減され
る割合をそれぞれ表し,すべて正の定数である.ただし，0 ≤ ρ, ε ≤ 1である．
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しかし (1.1)では,ウイルスに感染してから発症するまでの潜伏期間を考えていないため,現実の現象
を記述しているとは考えにくい.そこで,本論文では,ウイルスに感染してから発症するまでの潜伏期
間 τ を考慮する. (1.1)の I の項に時間遅れを入れて, I(t − τ)として考える.ただし, 簡単のためメ
ディアによる効果は考えない.すなわち,

dS

dt
= (1− ρ)b− β0SI(t− τ)− (ν + µ)S

dV

dt
= ρb+ νS − εβ0V I(t− τ)− µV

dI

dt
= β0SI(t− τ) + εβ0V I(t− τ)− αI

dR

dt
= κI − µR

(1.2)

を考える.ただし，µκ + κ+ µ = αとおいた.

2 主定理
本講演では,主定理として,ロタウイルスが蔓延しない場合と蔓延する場合,それぞれの平衡点の存

在と,その安定性を明らかにしたことを紹介する.

定理 2.1. ロタウイルス感染症が蔓延しない平衡点 E∗ =

(
(1− ρ)b

ν + µ
,
b(ρµ+ ν)

µ(ν + µ)
, 0, 0

)
の漸近安定性

について,次が成り立つ. 　

(1) α >
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

µ(ν + µ)
のとき, 平衡点 E∗ は 漸近安定である.

(2) α <
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

µ(ν + µ)
のとき, 平衡点 E∗ は 不安定である.

注意 2.2. [2]でも，ロタウイルス感染症が蔓延しない平衡点 E∗ =

(
(1− ρ)b

ν + µ
,
b(ρµ+ ν)

µ(ν + µ)
, 0, 0

)
は，

同じ条件で漸近安定性・不安定性が示されている．

定理 2.3. ロタウイルス感染症が蔓延する平衡点 E∗ = (S∗
+, V

∗
+, I

∗
+, R

∗
+), (S∗

−, V
∗
−, I

∗
−, R

∗
−)の漸近

安定性について,次が成り立つ.ただし,

S∗
+ =

(1− ρ)b

ν + µ+ β0I+
, V ∗

+ =
b(ν + ρµ+ ρβ0I+)

(ν + µ+ β0I+)
, I∗+ = I+, R∗

+ =
κI+
µ

,

S∗
− =

(1− ρ)b

ν + µ+ β0I−
, V ∗

− =
b(ν + ρµ+ ρβ0I−)

(ν + µ+ β0I−)
, I∗− = I−, R∗

− =
κI−
µ

である.

(1) τ = 0のとき, 平衡点 E∗ は漸近安定である.



(2) τ > 0のとき, P 2
2 − P1P3 + 2Q1Q3 −Q2

2 > 0であれば, 平衡点 E∗ は漸近安定である.ただし,

P1 = (µ+ ν + β0I
∗) + (µ+ εβ0I

∗) + α,

P2 = α(µ+ εβ0I
∗) + (µ+ ν + β0I

∗)(µ+ εβ0I
∗) + (µ+ ν + β0I

∗)α,

P3 = (µ+ ν + β0I
∗)α(µ+ εβ0I

∗),

Q1 = −α,

Q2 = −µα− (µ+ ν + β0I
∗)α+ (1− ε)β2

0S
∗I∗,

Q3 = −(µ+ ν + β0I
∗)µα+ µ(1− ε)β2

0S
∗I∗

である.

3 主定理の証明の概略
(1.2)の平衡点 E∗ = (S∗, V ∗, I∗, R∗)を，定義に従って求めることから始める．I∗ = 0の場合は

ロタウイルス感染症が蔓延しない平衡点であり，I∗ ̸= 0の場合が蔓延する平衡点となる．
次に，その平衡点まわりでのヤコビ行列を考え，その行列の固有値を考察する．はじめに τ = 0の

場合から考察をはじめ，すべての固有値が実部が負であれば漸近安定であり，１つでも実部が正の固
有値があれば不安定となる．τ > 0の場合は，τ = τ∗ で固有値 λが虚軸上にくる，すなわち τ = τ∗

のとき λ = iω（ω > 0）となると仮定して，このような ω > 0が存在するかどうかを議論する．定理
の主張である平衡点の漸近安定性を示すために，このような正の解 ω が存在しない条件を考察する．

3.1 平衡点
(1.2)の解が時間とともにどこへ収束するかを調べるため，(1.2)の平衡点 (S∗, V ∗, I∗, R∗) を求め

る。平衡点は時間によらないため，次を満たす。


(1− ρ)b− β0S

∗I∗ − (ν + µ)S∗ = 0 (3.1a)

ρb+ νS∗ − εβ0V
∗I∗ − µV ∗ = 0 (3.1b)

β0S
∗I∗ + εβ0V

∗I∗ − αI∗ = 0 (3.1c)

κI∗ − µR∗ = 0 (3.1d)

が成り立つ.

(3.1c)より
I∗(β0S

∗ + εβ0V
∗ − α) = 0

となる.よって, I∗ = 0または β0S
∗ + εβ0V

∗ − α = 0が成立する.

(i) I∗ = 0のとき

(3.1a), (3.1b), (3.1d)より, I∗ = 0のときの平衡点 E∗ は

E∗ = (S∗, V ∗, I∗, R∗) =

(
(1− ρ)b

ν + µ
,
b(ρµ+ ν)

µ(ν + µ)
, 0, 0

)
(3.2)



となる.

(ii) β0S
∗ + εβ0V

∗ − α = 0のとき

(3.1d)より

R∗ =
κI∗

µ
(3.3)

が得られる.また (3.1a)より

S∗ =
(1− ρ)b

ν + µ+ β0I∗
(3.4)

が得られる.また, (3.1b)より

V ∗ =
b(ν + ρµ+ ρβ0I

∗)

(ν + µ+ β0I∗)(εβ0I∗ + µ)
(3.5)

が得られる.次に

β0S
∗ + εβ0V

∗ − α = 0

に (3.4), (3.5)を代入し整理すると

αεβ0
2I∗2 + β0 [α{µ+ ε(ν + µ)} − bεβ0] I

∗ + α(ν + µ)µ− β0b{(1− ρ)µ+ ε(ν + ρµ)} = 0
(3.6)

が得られる.ここで

p := αεβ0
2 (3.7)

q := β0 [α{µ+ ε(ν + µ)} − bεβ0] (3.8)

r := α(ν + µ)µ− β0b{(1− ρ)µ+ ε(ν + ρµ)} (3.9)

とおく. I∗ は感染性人口を表し,非負であるから,次の 2つの場合に分けて (3.6)を解き, I∗ を
求めていく.� �

(a) 2つの解が共に正の値になる
(b) 2つの解のうち 1つの解が正の値,もう一方の解が負の値になる� �

(3.6)の左辺を f(I∗)とおき,二次方程式 f(I∗)=0の判別式を D とする.

(a)の場合

1○ 判別式 D > 0 2○ 二次関数 f(I∗)の軸 > 0 3○ f(0) > 0



　
の 3つの条件について考えればよい. 2○について

bεβ0 > α{µ+ ε(ν + µ)} · · · 2○′

が得られる.また, 3○について f(0) > 0になるための条件として

α(ν + µ)µ＞β0b{(1− ρ)µ+ ε(ν + ρµ)} · · · 3○′

が得られる.また, 1○について判別式 D ＞ 0となるための十分条件として

−bεβ0 + 4α{(1− ρ)µ+ ε(ν + ρµ)}＞ 0 · · · 1○′

が得られる.よって, 1○′～ 3○′が (a)を満たすための必要十分条件である.これらの条件のもと,
次の 2つの正の解が得られる.

I∗ =
−[α{µ+ ε(ν + µ)} − bεβ0]±

√
[α{µ+ ε(ν + µ)} − bεβ0]2 − 4αε[α(ν + µ)µ− β0b{(1− ρ)µ+ ε(ν + ρµ)}]

2αεβ0

ここで,正の解 I+, I−を

I+ =
−[α{µ+ ε(ν + µ)} − bεβ0] +

√
[α{µ+ ε(ν + µ)} − bεβ0]2 − 4αε[α(ν + µ)µ− β0b{(1− ρ)µ+ ε(ν + ρµ)}]

2αεβ0

I− =
−[α{µ+ ε(ν + µ)} − bεβ0]−

√
[α{µ+ ε(ν + µ)} − bεβ0]2 − 4αε[α(ν + µ)µ− β0b{(1− ρ)µ+ ε(ν + ρµ)}]

2αεβ0

と定める.よって (3.3), (3.4), (3.5)より, (a)の場合 β0S
∗ + εβ0V

∗ − α = 0のときの平衡点
E∗ は

E∗ = (S∗
+, V

∗
+, I

∗
+, R

∗
+), (S∗

−, V
∗
−, I

∗
−, R

∗
−) (3.10)

となることがわかる.ここで

S∗
+ =

(1− ρ)b

ν + µ+ β0I+
, V ∗

+ =
b(ν + ρµ+ ρβ0I+)

(ν + µ+ β0I+)
, I∗+ = I+, R∗

+ =
κI+
µ

,

S∗
− =

(1− ρ)b

ν + µ+ β0I−
, V ∗

− =
b(ν + ρµ+ ρβ0I−)

(ν + µ+ β0I−)
, I∗− = I−, R∗

− =
κI−
µ

である.

(b)の場合

4○ f(0)＜ 0

　
の条件について考えればよい. 4○について

α(ν + µ)µ− β0b{(1− ρ)µ+ ε(ν + ρµ)}＜ 0 · · · 4○′

が得られる. 4○′ の仮定のもと, 正の解 I+ が得られる.よって (3.3), (3.4), (3.5)より, (b)の場
合 β0S

∗ + εβ0V
∗ − α = 0のときの平衡点 E∗ は

E∗ = (S∗
+, V

∗
+, I

∗
+, R

∗
+) (3.11)



となることがわかる.ここで

S∗
+ =

(1− ρ)b

ν + µ+ β0I+
, V ∗

+ =
b(ν + ρµ+ ρβ0I+)

(ν + µ+ β0I+)
, I∗+ = I+, R∗

+ =
κI+
µ

,

である.

3.2 平衡点の安定性
次に,各平衡点 E∗ = (S∗, V ∗, I∗, R∗)の安定性を調べる. (1.2)のヤコビ行列を求め, (1.2)を線形

化すると以下のようになる.

dS

dt
= {−β0I

∗ − (ν + µ)}S − β0S
∗I(t− τ)

dV

dt
= νS + (−εβ0I

∗ − µ)V − εβ0V
∗I(t− τ)

dI

dt
= β0I

∗S + εβ0I
∗V − αI + (β0S

∗ + εβ0V
∗)I(t− τ)

dR

dt
= κI − µR

(3.12)

この方程式を満たす 
S
V
I
R

 = eλt


S0

V0

I0
R0

 (3.13)

が存在するとする.ここで,


S0

V0

I0

R0

 ̸= 0であり, S0 = S(0), V0 = V (0), I0 = I(0), R0 = R(0)として

いる. (3.13)より, (3.12)を整理すると∣∣∣∣∣∣∣∣
λ+ β0I

∗ + ν + µ 0 β0S
∗e−λτ 0

−ν λ+ εβ0I
∗ + µ εβ0V

∗e−λτ 0
−β0I

∗ −εβ0I
∗ λ+ α− (β0S

∗ + εβ0V
∗)e−λτ 0

0 0 −κ λ+ µ

∣∣∣∣∣∣∣∣ = 0　 (3.14)

が得られる.

3.2.1 I∗ = 0のときの平衡点 E∗ の漸近安定性
以下,定理 2.1の証明を行う.

(3.2)の平衡点 E∗ において (3.14)を整理すると (1.2)の特性方程式は以下のように与えられる.

(λ+ ν + µ)(λ+ µ)2{λ+ α− (β0S
∗ + εβ0V

∗)e−λτ} = 0 (3.15)



したがって

λ1 = −ν − µ (3.16)

λ2 = −µ (3.17)

λ3 = −α+ (β0S
∗ + εβ0V

∗)e−λτ (3.18)

が得られる. ここで, λ1, λ2 はともに負であるので, 平衡点の安定性は λ3 の正負に依存する. そのた
め, −α+ (β0S

∗ + εβ0V
∗)e−λτ の正負を判定する. (3.2)より

λ3 = −α+
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

µ(ν + µ)
e−λτ (3.19)

が得られる.

τ = 0のとき
(3.19)より

α >
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

µ(ν + µ)
を仮定すると λ3 < 0,

α <
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

µ(ν + µ)
を仮定すると λ3 > 0

が成り立つ.

τ > 0のとき
(3.19)より

λ3 + α− β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}
µ(ν + µ)

e−λτ = 0　 (3.20)

が成り立つ.ここで, τ = τ1 > 0に対して λ = iω(ω > 0)で虚軸と交わるとし,オイラーの公式を利
用する.実部と虚部を分離すると

cosωτ =
αµ(ν + µ)

β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}
(3.21a)

sinωτ = − ωµ(ν + µ)

β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}
(3.21b)

が得られる.

λ3 < 0のとき, (3.21a)において α >
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

µ(ν + µ)
の仮定より cosωτ > 1と

なってしまう.よって,このとき λ = iω は存在しないことが分かる.したがって, (1.2)において (3.2)

の平衡点 E∗ は λ3 < 0のとき, τ ≥ 0でつねに漸近安定である.

一方, λ3 > 0のとき, (3.21a), (3.21b)において cos2 ωτ + sin2 ωτ = 1を用いて整理すると

ω2 =
β0

2b2{µ(1− ρ)(1− ε) + ε(µ+ ν)}2 − α2µ2(ν + µ)2

µ2(ν + µ)2
　 (3.22)



となる. α <
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

µ(ν + µ)
の仮定より,正の実数解をもつことが分かる.その値

を ω = ω1 とすると次のようになる.

ω1 =

√
β0

2b2{µ(1− ρ)(1− ε) + ε(µ+ ν)}2 − α2µ2(ν + µ)2

µ(ν + µ)
　 (3.23)

また, (3.21a),(3.23)より

τ1 =
µ(ν + µ)√

β0
2b2{µ(1− ρ)(1− ε) + ε(µ+ ν)}2 − α2µ2(ν + µ)2

arccos
αµ(ν + µ)

β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

(3.24)

が得られる.よって, (3.24)の τ1 に対して, λ = iω1 で虚軸と交わることが分かる.

次に, λが虚軸を通過するかどうかを調べる. Re( d
dτ λ3)の正負を判定する. (3.19) の両辺を τ で微

分し,整理すると

Re

(
d

dτ
λ3

)−1
∣∣∣∣∣
τ=τ1

= Re

{
ω2
1 + iω1α

ω4
1 + ω2

1α
2
+

τi

ω1

}
=

1

ω2
1 + α2

が得られる. Re

(
d

dτ
λ3

)−1
∣∣∣∣∣
τ=τ1

> 0であるため, λ3 は虚軸を通過することが分かる.よって, λ3 は

左半平面から右半平面に移動をしていることになる.しかし, λ3 > 0であるため,この動きには矛盾
が生じる．
実際，τ = 0のときは λ3 は正の実数であり，τ > 0に対して，λ3 が満たす関係式は

λ3 + α− (β0S
∗ + εβ0V

∗)e−λ3τ = 0 (3.25)

である. λ3 が τ の関数であるので, τ で微分することで τ > 0で λ3 は実数の値を取りながら減少し
ていくことがわかる．ただし，　

α <
β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}

ν(ν + µ)
= β0S

∗ + εβ0V
∗

のとき，(3.25)は λ3 = 0を解にもたないことがわかるので，λ3 は τ → ∞である正の値に収束する
ことがわかる．よって，τ > 0においては，つねに λ3 は正の実数の値をとることがわかる．以上か
ら，α <

β0b{µ(1− ρ)(1− ε) + ε(µ+ ν)}
ν(ν + µ)

のときは，(3.2)で与えられる平衡点 E∗ は τ ≥ 0でつね
に不安定であることがわかる．以上から,定理 2.1の主張が得られた.

3.2.2 β0S
∗ + εβ0V

∗ − α = 0のときの平衡点 E∗ の漸近安定性
以下,定理 2.3の証明を行う.

(3.10)の平衡点 E∗, (3.11) の平衡点 E∗ において (3.14)を整理すると (1.2)の特性方程式は以下の
ように与えられる.

(λ+ ν)[(λ+ εβ0I
∗ + µ)(λ+ α)(λ+ β0I

∗ + ν + µ)

− (λ+ µ)β0e
−λτ {νS∗ + εV ∗(λ+ β0I

∗ + ν + µ) + S∗(λ+ εβ0I
∗ + µ)}] = 0 (3.26)



λ+ ν = 0より, λ = −ν < 0が得られる. λが負であるため,平衡点の安定性は

(λ+ εβ0I
∗ + µ)(λ+ α)(λ+ β0I

∗ + ν + µ)

− (λ+ µ)β0e
−λτ {νS∗ + εV ∗(λ+ β0I

∗ + ν + µ) + S∗(λ+ εβ0I
∗ + µ)} = 0 (3.27)

から得られる λの正負に依存する.

τ = 0のとき
β0S

∗ + εβ0V
∗ − α = 0を用いて, (3.27)の左辺を整理すると以下のようになる.

(λ+ µ+ ν + β0I
∗) {λ(λ+ εβ0I

∗ + µ) + εαβ0I
∗}+ (λ+ µ)(1− ε)β2

0S
∗I∗ = 0　 (3.28)

ここで, ラウス・フルビッツ (Routh-Hurwitz) による定理を用いることで, (1.2) において (3.10),

(3.11)の平衡点 E∗ は τ = 0で漸近安定であることが分かる.

τ > 0のとき
β0S

∗ + εβ0V
∗ − α = 0を用いて, (3.27)の左辺を整理すると

(λ+ µ+ ν + β0I
∗)

{
(λ+ α)(λ+ εβ0I

∗ + µ)− (λ+ µ)e−λτα
}
+ e−λτ (λ+ µ)(1− ε)β2

0S
∗I∗ = 0
(3.29)

が得られる.ここで, (3.29)について

f1(λ) = (λ+ µ+ ν + β0I
∗)

{
(λ+ α)(λ+ εβ0I

∗ + µ)− (λ+ µ)e−λτα
}
+ e−λτ (λ+ µ)(1− ε)β2

0S
∗I∗

(3.30)

とおく.また,

P1 = (µ+ ν + β0I
∗) + (µ+ εβ0I

∗) + α

P2 = α(µ+ εβ0I
∗) + (µ+ ν + β0I

∗)(µ+ εβ0I
∗) + (µ+ ν + β0I

∗)α

P3 = (µ+ ν + β0I
∗)α(µ+ εβ0I

∗)

Q1 = −α

Q2 = −µα− (µ+ ν + β0I
∗)α+ (1− ε)β2

0S
∗I∗

Q3 = −(µ+ ν + β0I
∗)µα+ µ(1− ε)β2

0S
∗I∗

とおくと (3.30)は

f1(λ) = (λ3 + P1λ
2 + P2λ+ P3) + (Q1λ

2 +Q2λ+Q3)e
−λτ (3.31)

と書くことができる. (3.31)において λ = iω とする.また, eiϑ = cosϑ+ i sinϑを利用し整理すると

P 2
1 ω

4 − 2P1P3ω
2 + P 2

3 −Q2
2ω

2 sin2 ωτ − 2(Q2Q3ω −Q1Q2ω
3) sinωτ cosωτ

− (Q2
3 − 2Q1Q3ω

2 +Q2
1ω

4) cos2 ωτ + ω6 − 2P2ω
4 + P 2

2 ω
2

−Q2
2ω

2 cos2 ωτ − 2(Q1Q2ω
3 −Q2Q3ω) sinωτ cosωτ − (Q2

1ω
4 − 2Q1Q3ω

2 +Q2
3) sin

2 ωτ

= ω6 + (−2P2 + P 2
1 −Q2

1)ω
4 + (P 2

2 + 2Q1Q3 −Q2
2 − 2P1P3)ω

2 + (−Q2
3 + P 2

3 )



が得られる.ここで

a4 = −2P2 + P 2
1 −Q2

1

a5 = P 2
2 + 2Q1Q3 −Q2

2 − 2P1P3

a6 = −Q2
3 + P 2

3

とおき,

f(ω) = ω6 + a4ω
4 + a5ω

2 + a6 (3.32)

とする.ここで,

a4 = (µ+ εβ0I
∗)2 + (µ+ ν + β0I

∗)2 > 0 (3.33)

が成り立つ.また,

a6 = −Q2
3 + P 2

3 = (P3 +Q3)(P3 −Q3) (3.34)

について (3.4), (3.5), β0S
∗ + εβ0V

∗ − α = 0 を用いると

a6 > 0 (3.35)

が成り立つ.また, (3.32)において ω2 = z とすると

f(z) = z3 + a4z
2 + a5z + a6 (3.36)

が得られる.ここで
d

dz
f(z) = 3z2 + 2a4z + a5 = 0 (3.37)

の解について考える.

z =
−a4 ±

√
a24 − 3a5
3

より, a5 > 0である場合, (3.36)は正の解をもたない.つまり,このとき (1.2)において (3.10), (3.11)

の平衡点 E∗ は τ ≥ 0でつねに漸近安定である.以上から,定理 2.3の主張が得られた.
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